CALCULUS OF VARIATIONS AND OPTIMIZATION METHODS

Part II. Optimization methods

Lecture 14. Stationary conditions and variational inequalities 

We consider the methods of solving of abstract extremum problems. Necessary condition of the minimum for the problem of the minimization of Gateaux differentiable functional without any constraints is the equality to zero of the functional derivative at the point of the extremum. The standard stationary condition, Euler equation for Lagrange problem, Poisson equation for the problem of the minimization of Dirichlet integral can be obtained as the partial cases of this result. We will determine also the variational inequality as a necessary condition of the minimum of the Gateaux differentiable functional on the convex set.

14.1. Stationary condition

Consider the problem of the minimization Gateaux differentiable functional I on the unitary space V.

Theorem 14.1. If u is the point of the minimum of Gateaux differentiable functional I on the unitary space, then the stationary condition
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holds.

Proof. Let u be the point of the minimum of the functional I. Then we have the inequality
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Determine the function of one variable
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where h is an arbitrary fixed point of the space V. So we transform the inequality (14.2) to 
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Hence zero is a point of the minimum of the function f. So it satisfies the stationary condition 
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 Find this derivative with using the definition of Gateaux derivative. We get
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Therefore we obtain the equality
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It is true for all function h. Determine 
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 So we have
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However the norm can be equal to zero only for zero point of the space. Then the equality (14.1) is true.                                                                                                                                              (
Example 14.1. The function of one variable. Consider the problem of the minimization of the function 
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 We know, that its Gateaux derivative at the point x is its classical derivative at this point. So the stationary condition (14.1) is the equality 
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 It is the standard stationary condition for the function of on variable.                                                                              (                                                                                                                                 
Example 14.2. The function of many variables. Consider the problem of the minimization of the 
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 Its Gateaux derivative at the point 
[image: image13.wmf]1

(,...,)

n

xxx

=

 is the gradient 
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So we obtain the stationary condition 
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Example 14.3. Lagrange functional. Consider the problem of the minimization of the functional
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on the set 
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 of the smooth enough functions on the interval 
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 with zero values on the boundary of this interval, where the function F is smooth enough. We know its Gateaux derivative
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So we have the stationary condition
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This is Euler equation.                                                                                                                     (
Example 14.4. Dirichlet integral. Consider the problem of the minimization of Dirichlet integral 
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on the set 
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 of the smooth enough functions on ( with zero value on the boundary of (. Its Gateaux derivative equal to


[image: image23.wmf]()2()

.

Ivfv

¢

=-D


So we have the stationary condition
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This is Poisson equation.                                                                                                           (
Hence a lot of known results can be obtained as corollaries of the stationary condition (14.1).
14.2. Variational inequality. 

Determine an extension of the previous results. Know we have the problem of the minimization Gateaux differentiable functional I on a subspace U of a unitary space V. We will consider a special case of the set U.
Definition 14.1. The set U is convex if it satisfies the inequality
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The geometric sense of the convex set is illustrated on Figure 14.1.
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                                                                             convex set                     non-convex set
Figure 14.1 Convexity of sets. 
Theorem 14.2. If u is the point of the minimum of Gateaux differentiable functional I on the convex set U of a unitary space, then the variational inequality
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holds.

Proof. Let u be the point of the minimum of the functional I on the set U. Then we have the inequality
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Using the convexity of the set U determine the inclusion of the point 
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 to the set U for all
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 Put this value to the inequality (14.4). We get
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After division by ( we have
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Pass to the limit with using the definition of Gateaux derivative. We obtain the variational inequality (14.3).                                                                                                                     (    
Determine the relations between stationary condition and variational inequality.
Theorem 14.3. If the function u satisfies the stationary condition, than it is the solution of the variational inequality. If the function u is a solution of the variational inequality for the minimization problem without any constraints, than it satisfies the stationary condition.

Proof. The first assertion of this theorem is trivial because the scalar product is equal to zero is one of the multiplier is zero. Proof the second part of this theorem. Let the set U is equal to the whole space V. So we have the following variational inequality 
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Choose the function v is equal to 
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 where h is an arbitrary function. So we obtain two inequalities 
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So we get the equality
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Then we obtain the stationary condition 
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Example 14.5. Minimization of the distance. We a unitary space V, its convex closed set U, and a point z of V. Consider the functional 
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This is the distance between v and the fixed point z (see Figure 14.2). We have the problem of its minimization. So we find the minimal distance between the set U and the point z.  
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Figure 14.2. Minimization of the distance between the point z and the set U.

Find the derivative of the given functional. We have
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Then we get
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So we find
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 Put it to the variational inequality (14.3). We obtain
                                                              
[image: image44.wmf](

)

,0.

 

uzvuvU

--³"Î

                                         (14.5)

Determine the projector 
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 It maps an arbitrary point v of the space V to the its nearest point of the set U.  Hence the point 
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 satisfies the variational inequality (14.5).

Consider the partial case with following space and set
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where a and b are the given constants, besides 
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 So the functional I is determined by the equality
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We obtain the variational inequality (14.5)
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Choose an arbitrary interior point ( of the set ( and a number 
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, we the number ( is such small that this ball belongs to the set (. Determine the function (see Figure 14.3) 
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Figure 14.3. The function v(.
For all 
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Pass to the limit as 
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The first multiplier does not depend from the arbitrary parameter w here. So it has a concrete sign. If 
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then we can devise the inequality (14.7) by the first multiplier. We obtain
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So the value 
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If 
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then after division the inequality (14.7) by the first multiplier we obtain
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So the value 
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 So it is not greater than b. But the function u is admissible. Then we obtain the equality 
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Finally we can have the equality 
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But the function u is admissible. So we can use this result exclusively for the inclusion 
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 is true. Hence we obtain the following result
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The value 
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 (see Figure 14.4). So the solution of the variational inequality determines the projection of the set U to the given space
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Figure 14.4. The function u is the projection of the function z on the set U.
Task

Find the function 
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Table of the parameters
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Steps of the task:

1. Find the Gateaux derivative.

2. Write the stationary condition and find the stationary points.

3. Write the variational inequality.

4. Find the solution of the variational inequality.
Outcome

· Stationary condition can be determine for the general functionals.
· Euler equation is the corollary of the general stationary condition.

· Poisson equation is the corollary of the general stationary condition.

· Variational inequality is a necessary condition of optimality for the minimization of the general functionals.
· Variational inequality is the extension of the stationary condition to the problems of minimization of the general functionals on the convex set.
· Variational inequality can be solved directly.

· Projection gradient method is the algorithm of finding an approximate solution of the variational inequalities.
Task. Minimize the functional 
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Values of parameters:

	variant
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Steps of the task:

1. Find Gateaux derivative of the functional.

2. Determine the stationary condition for the non-conditional minimization problem.

3. Determine the variational inequality for the minimization problem of the given functional on the convex set U.
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